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Spatially-explicit model of population
dynamics of Aedes aeqypti

(GeoINFO 2010)
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Figure 1. Aedes aegypti life cycle.




Ferreira e Yang (2003) population
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Figure 2. Flow diagram describing Aedes aegypti life cycle (adapted from Ferreira e
Yang, 2003).



Objectives

Understanding the spatial-temporal dynamics of Aedes aegypti populations.

Proposing a new approach to couple Aedes aegypti population dynamic models

with local scale spatially-explicit models, which are integrated with

geographical databases.

The goal is to calculate, at each simulation time step, the variation in population

size given by the dynamic models and allocate it in a grid of regular cells that

represents the Geographical Space.



Study Area and Sample Design

The data used in this work (eggs collection) was collected by Honorio et al., (2009).
1.5 years of weekly collections with ovitraps (Honorio et al. 2009).

Temperature was collected from Rio de Janeiro's international airport.
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Figure 3. Study area and ovitrap locations — Higienopdlis, Rio de Janeiro, RJ.



Steps of the model construction

1. Dynamic Model Development
Modified from Ferreira and Yang (2003) [Lana 2009]

2. Model Calibration and Validation

Real data stored in TerraLib [Camara et al. 2000]
Calibration at several scales: whole region, census tract and lot scale
Monte Carlo simulations

3. Spatial Model Development
Kernel Estimator has been used for smoothing egg density surface

Allocation algorithm based on egg density surface and the female egg
carrying capacity

All components have been implemented in the TerraME modeling environment
[Carneiro 2006].



Population Dynamics Model
Adopted

Four differential equations describe the rate of change of mosquito abundance, per life

stage: eggs, larvae, pupae and adult.
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Improvements Inserted in the Model

Temperature-dependent developmental rates [Sharpe and DeMichelle,

1977].
Eggs are layed at a temperature and density-dependent rate.
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Figure 4. Quadratic function 0.2
describing the relationship
between oviposition rate and air 0
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of Hondrio et al. (2009).
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Parameters of the Model

The model presents only one free parameter, the carrying capacity C.

Table 1. Parameters used in the dynamic model

Parameter Value
ovip (1) (Quadratic function in Figure 3)
al(t), o2(t), c3(t) Fixed (equation proposed by Sharpe e

DeMichelle. 1977)

ml(t), m2(t), m3(t) Fixed (1/100. 1/3. 1/70 respectively)
mecl(t), mec2(t), mec3(i) Fixed (0)
larvit), larv2(i) Fixed (0)
adulf(t) Fixed (0)

- Fitted




Sensitivity Analysis

Models Behavior
Free parameter: Carrying Capacity, C

Values: 100, 500, 1000



Calibration and Validation

First subset: calibration ;

Figure 5. Dividing in

Monte Carlo method calibration and validation
points o a0 600

Mean Quadratic Error

2000 iterations were performed in 10000 MC method experiments

Second subset: validation

The validation error was compared to the error obtained by the calibration

pProcess.



Geographical Database

Geographical
Database
QELEAE)

Maps with ovitrap
locations

Number of eggs
collected per ovitrap

per week A grid of regular cells (10 x

10 meters): store model's
inputs and outputs

Spatial location of
schools, houses, water
reservoirs

Census tracts and
Census data
in the area




Scale Issues and Estimation of the
Infestation Spatial Pattern

Three scales for the spatial distribution of the Aedes aegypti
population in Higienopolis:
Whole region (Population Dynamic Model)
Census tract scale
Lot scale



How to calibrate the allocation model?

INPUT DATA OUTPUT DATA

We use the kernel estimator with aggregated value for this task...

But the question remains: How to use the 78 maps?



Census tract scale

The ovitrap data was aggregated by census tract.
Linear regression applied: C = 37.48 + 5.387*mean (Eggs), with r? = 96.5%.
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Figure 5. (a) The Higienopolis district divided in census tracts. (b) Comparison between the estimated
carrying capacity per census tract and the mean number of eggs.



Steps for Lot Scale

Kernel Estimator

Estimation of a continuous surface of egg density

78 weekly maps

\

Average map of egg density

\

Input to the spatial model

Why average maps?
An arithmetic average of samples for
each census tract has the same
information obtained when the model
was calibrated separately for each
census tract.
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Figure 6: Average kernel map of egg density.



Allocation model for spatialization of the
Aedes aeqypti population

Considerations to develop an Aedes aegypti population
allocation procedure.

Cells of 10 by 10 meters were generated and adopted as the spatial scale.

The estimated egg population is distributed through space according to the
kernel map of egg density.

The carrying capacity is proportional to the mean egg density



Algorithm of allocation

for each time step t do
estimatedPop = DynamicModel (1)
allocatedPop =0
while (allocatedPop < popEstimated) do
for each cell in decresingOrder ( averageKernelMap )
quantity = 63 * cell.Kernelintensity
cell.eggPop = cell.eggPop + quantity
allocatedPop = allocatedPop + quantity
end for each cell
end while
t=t+1
end for each time step

Figure 7. Aedes aegypti population dynamic allocation algorithm



Algorithm

Figure 8. Spatially-explicit model algorithm



Results and Future Works

An approach to allocate the Aedes aegypti population on the real space.
The allocation algorithm based on Kernel estimator map.

Parameterizing and integrating to a geographical database for the
Higienopolis district from Rio de Janeiro city, RJ, Brazil.



« Temperature: less responsive to control the model.
« Winter: largest discrepancy.
* Underestimating the quantity of weekly deposited eggs.
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Figure 9. Graph of comparing between Observed oviposition (OO) and Simulated oviposition (SO) in
Population Dynamic Model. The blue line, temp, is the temperature time series.



Several factors can be contributed for this imperfection:
— Just on 1.5 years of sampling

— The Higiendpolis neighborhood is not an isolated place

Despite the simplifications introduced in the spatialization of the model,
the model was capable of capturing the spatial pattern of eggs
density.

Despite this spatial similarity, though, simulated and observed maps differ
in the intensity of the mosquito abundance.

Filme



Neglecting the interactions between spatial heterogeneity and the
growth of the mosquito population.

— Whole district as a homogeneous area.

— It does not consider the spread of mosquito by flight.

Other simplification: egg density average map to base the allocation.

— The average map fixes the spatial structure while the intensity of eggs changes
during the time. Hence, we consider that the average map is only an indicator of
average risk.



Future works

Investigating integrated methods to develop spatial dynamic models for the Aedes
aegypti life cycle.

Evaluating each improvement of Aedes aegypti population dynamic model.

The spatial structure will be dynamic and population dynamics will be governed by
autonomous populations located in each cell.

Dispersion of mosquitoes by flight will be also considered.

Simulation of control strategies to evaluate their
efficiency.

Figure 10. Autonomous Aedes aegypti
populations occupy each space cell. Mosquitoes
may fly to the neighbor cells indicated by blue
arrows. E: egg, L: larva, P: pupa and A: adult.




Comparison of population dynamics
models

(Preliminary Analysis)




Objectives

Real capacity of dynamic models to simulate the life cycle of Aedes

aegypti.

Impact of these contributions on the conceptual complexity and

representation of the model.



Methodology

Population dynamic models for Aedes aegypti
Sensitivity analysis
Calibration

Validation



Study Area and Sampled Design

The data used in this work (eggs collection) was collected by Honorio et al., (2009).

1.5 years of weekly collections with ovitraps (Honorio et al. 2009) for three
neighborhoods of Rio de Janeiro:
Higienopolis
Tubiacanga

Palmares

Temperature was collected from Rio de Janeiro's international airport.
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Figure 11: Studies areas

Palmares, Vargem Pequena
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Ferreira e Yang Model
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Initiation

Oviposition and
Temperature
weekly data

Ferreira e Yang Model
(2003) with real data of
temperature,
Thermodynamic Equation
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Models Behavior

Free parameter: Carrying Capacity, C

Values: 100, 500, 1000



Estimative of Carrying Capacity

Dividing into two subsets

First group of data:

Monte Carlo method to minimize the quadratic average error

2000 iterations to 10000 MC experiments



Second group of data

Provided as models input

Comparison between the errors of calibration and

validation



Table 2: Average errors for model calibration and

coefficient of variation

Results

_Model | Mean | sSD | variance |Coef Variation
Model 1 | 0.916077 | 0.097116 | 0.009432 10.6013
Model 2 | 0.497158 | 0.063467 | 0.004028 12.766
Model 3 | 0.599687 | 0.073435 | 0.005393 12.2455
Model 4 | 0.964621 | 0.060785 | 0.003695 6.30145
Model 5 | 0.43626 | 0.076079 | 0.005788 17.4388
Model 6 | 0.489825 | 0.063655 | 0.004052 12.9954
Model 7 | 0.734259 | 0.242422 | 0.058768 33.0158
Model 8 | 0.440975 | 0.07355 | 0.00541 16.6789
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Figure 12 : Average errors for model calibration




Results

CCapacity
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Results

Table 4: Comparison between Calibration and
Validation Errors

Model Higiendpolis| Palmares Tubiacang_aJ
Model 1 0% 8% 1%
Model 2 14% 20% 2%
Model 3 9% 11% 6%
Model 4 0% 11% 0%
Model 5 12% 29% 1%
Model 6 14% 22% 1%
Model 7 10% 43% 2%
Model 8 13% 27% 1%
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Figure 15: Comparison between 1 2 3 4 5 6 7 8
Calibration and Validation errors Models




Conclusion

Models were parameterized, calibrated and validated for all

neighborhoods.
However, calibration and validation for some models were not great.

The model of highest complexity no obtains the best fit, in contrary of

expectations.



Conclusion

Models with one improvement showed lowest errors.

Factors that can have contributed for imperfections:
Less than 2 cycles of temporal series data

External influences



Future Works

Investigating problems on the models that causes big
errors.

Improving mathematics and statistics.

Testing and comparing stochastic models.



Chronogram



Steps

First step:
Training student's scientific initiation

Second step:
Evaluation of Deterministic Models for Population Dynamics of Aedes aegypti

Third step:
Evaluation of Stochastic Models for Population Dynamics of Aedes aegypti

Fourth step:
Evaluation of Spatially-Explicit Models for Population Dynamics of Aedes aegypti

Fifth step:
Spatially-Explicit Population Control

Sixth step:
Construction of the Software for Identifying Priority Areas for Control



Working Partnerships



Multidisciplinary Project

Interaction between different types of professionals

TerraLab example:
Biologist: define and understand the model
Computer Scientist: simplicity of implementation

Current problem of this partnership: difficulties related to advanced
mathematics
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